

# **Buck-Derived Converters**

Presented by

Xinbo Ruan

Aero-Power Sci-tech Center
Nanjing University of Aeronautics & Astronautics

2011-10-25



### Forward Converter



### Advantages:

- © Simple topology;
- **No direct-short problem.**

### **Disadvantages**:

- $\odot$  The duty cycle is limited to 0.5;
- The transformer is unidirectional magnetic, so it is very large;
- The filter inductance is large;
- The voltage stress of the rectifier diodes is high.



# Double Forward Converter (1)





### Double Forward Converter (2)

# $\begin{matrix} v_{rect1} \\ i_{Lf1} \\ v_{rect2} \\ \vdots \\ i_{Lf2} \\ v_{o} \\ t \\ v_{o} \\ t \\ v_{o} \\ v_{o} \\ \vdots \\ v_{o} \\ v_{o} \\ v_{o} \\ v_{o} \\ \vdots \\ v_{o} \\ v_$

$$V_o = L_f \frac{\Delta i_{Lf}}{T_{off}} \qquad \Delta i_{Lf} = \frac{V_o}{L_f} \cdot (1 - D) \cdot T_s$$

 $T_s/2$ 

Given  $D_{max}$ =0.45 for single Forward converter.







### Double Forward Converter (3)

### Aero-Power Sci-tech Center





### The reasons for the reduction of $L_f$

- > The magnitude of the secondary voltage is reduced to half;
- ➤ The ripple frequency is doubled.



# Derivation of Push-Pull Converter (1)







# Derivation of Push-Pull Converter (2)





# Magnetic Reset of Push-Pull Converter







### Push-Pull Converter



It is suited for the low input voltage applications

### Advantages:

- © Bi-directional magnetic, leading to small transformer;
- © The duty cycle can be extended to be 1.0, leading to reduced filter inductance and lower voltage stress of the rectifier diodes.

### **Disadvantages**:

- The switches sustain twice of the input voltage;
- The leakage inductance results in large voltage spike across the switches;
- There is a risk of saturation of the transformer due to the dc component.



# Derivation of Half-Bridge Converter





## Half-Bridge Converter



### Advantages:

- © Bi-directional magnetic, leading to small transformer:
- © The duty cole on be extended to be 1.0, leading educed filter inductance and ower voltage stress of the rectifier diodes.

### **Disadvantages**:

- The switches sustain twice of the input voltage;
- E The leakage inductance results in large voltage spike across the switches;
- There is a risk of saturation of the transformer due to the dc component



# Derivation of Full-Bridge Converter



2011-10-25



# Full-Bridge Converter





# **Comparison of the Converters**

# Design a DC/DC converter

- Input Voltage:  $V_{in}$
- Output Voltage:  $V_o$
- Output Current: *I*<sub>o</sub>

Given the duty cycle of all the switches be 0.5



# **Comparison of the Converters**

| Converter                    | Topology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Winding<br>Ratio | <b>Current Stress</b> | Voltage<br>Stress | No of<br>Switches | Total Power of Switches     |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------|-------------------|-----------------------------|
| Single-<br>Switch<br>Forward | $V_{in} = \begin{pmatrix} T_r & D_{R1} & L_f & \\ & & D_{R2} & C_f \end{pmatrix} + \begin{pmatrix} V_o & \\ & & V_o \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $K_0$            | $I_o/K_0$             | $2V_{in}$         | 1                 | $2V_{in}I_o/K_0$            |
| Dual-<br>Switch<br>Forward   | $V_{in}$ $Q_1$ $T_r$ $D_1$ $D_2$ $D_2$ $D_2$ $D_2$ $D_2$ $D_3$ $D_4$ $D_5$ $D_6$ $D_7$ $D_8$ $D_8$ $D_9$ $D_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_0$            | $I_o/K_0$             | V <sub>in</sub>   | 2                 | $2V_{in}I_o/K_0$            |
| Push-<br>Pull                | $Q_1 \longrightarrow V_{in} \longrightarrow V_{i$ | $2K_0$           | $I_o/(2K_0)$          | $2V_{in}$         | 2                 | $2V_{in}I_o/K_0$            |
| Half-<br>Bridge              | $V_{in} = \begin{bmatrix} C_{d1} & Q_1 & D_1 & D_2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $K_0$            | $I_o/K_0$             | V <sub>in</sub>   | 2                 | $2V_{in}I_o/K_0$            |
| Full-<br>Bridge<br>2011-     | $V_{in} = \begin{bmatrix} D_1 & D_1 & D_2 \\ Q_3 & D_3 & Q_4 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_1 & D_2 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D_3 \end{bmatrix} \begin{bmatrix} D_1 & D_2 \\ D_2 & D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2K_0$           | $I_o/(2K_0)$          | V <sub>in</sub>   | 4                 | $\frac{2V_{in}I_o/K_0}{15}$ |



# Thanks for your attention!

Questions? / Answer!

2011-10-25